POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Power plants and heat power plants

Course

Field of study Year/Semester

Green energy 1/1

Area of study (specialization) Profile of study general academic

Level of study Course offered in

Second-cycle studies english

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 30 0

Tutorials Projects/seminars

15 0

Number of credit points

4

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr hab inż. Bartosz Ceran mgr inż. Jacek Roman

Faculty of Environmental Engineering and Faculty of Environmental Engineering and

Energy Energy

Institute of Electric Power Engineering Institute of Electric Power Engineering

e-mail: bartosz.ceran@put.poznan.pl e-mail: bartosz.ceran@put.poznan.pl

tel. 61 665 2523 tel. 61 665 22 75

Prerequisites

The student has basic knowledge of the basics of energy transformations and the construction and principles of operation of energy machines and devices. He knows the basics of electrical engineering and energy. He understands the principles of operation of basic machine parts and knows the construction of basic conventional energy devices. The student is aware of the need to expand his competences and is ready to cooperate as part of the team

Course objective

Acquiring the skills of mathematical modeling of technological systems of power plants and CHP plants and obtaining the ability to determine the values of operational indicators.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

Student knows the principles of constructing mathematical models intended for energy analysis of technological systems of power plants and heat and power plants.

Student has knowledge of the methods of improving the efficiency of the process of converting primary energy into electricity.

Skills

The student is able to model the technological system of power plants and combined heat and power plants with the use of appropriate tools.

The student is able to carry out technical and economic analyzes and make a comparison of selected technological systems

Social competences

The student is aware of the importance of the power industry for the country and society, and understands the need to reduce the negative impact of the manufacturing sector on the environment.

The student understands the need to make the society aware of the development of the power generation sector.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture

- evaluation of the knowledge and skills listed on the written exam,

Tutorials

- credit on the basis of the current check messages and one written tests of the accounting tasks

 Laboratory classes
- assessment of knowledge and skills related to the implementation of the tasks your practice, the assessment of report of performed exercise,
- obtaining additional points for the ability to work within a team practice performing the task detailed in the laboratory and developed aesthetic diligence reports.

Programme content

Lecture

Technological systems of steam power plants working on under and supercritical steam parameters. Technological systems of steam CHP plants. Technological systems of gas and gas-steam power plants and combined heat and power plants. Technological systems of nuclear power plants.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Tutorials

Energy calculations of technological systems of power plants and combined heat and power plants

Laboratory classes

Modeling of technological systems with the use of specialized computer software.

Teaching methods

Lecture

Lecture with multimedia presentation supplemented with examples given on the board.

Tutorials

Tasks counted on the board.

Laboratory classes

Laboratory exercises performed with the help of engineering programs.

Bibliography

Basic

Dipak Sarkar - Thermal Power Plant, 1st Edition - August 20, 2015

Xingrang Liu, Ramesh Bansal - Thermal Power Plants: Modeling, Control, and Efficiency Improvement, CRC Press; 1st edition (June 30, 2020)

Ajay Kumar Debnath, Swapan Basu - Power Plant Instrumentation and Control Handbook : A Guide to Thermal Power Plants, Elsevier Science Publishing Co Inc

Additional

Thermal Power Plants Handbook - ML Books International - IPS, 2016

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,0
Classes requiring direct contact with the teacher	60	2,5
Student's own work (literature studies, preparation for	40	1,5
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate